Enhancing Signal Processing with Correction Terms: A Novel Approach to Fourier Series Expansion

Cheng-Che Lee, Hsin-Jung Lee*, Yi-Min Yang, Wei-Yu Lee, Chieh-Hsiung Kuan
Graduate Institute of Electrics Engineering, National Taiwan University, Taipei 106, Taiwan (R.O.C.)
* E-Mail: d04943010@ntu.edu.tw

Abstract

- An innovative correction term basis that enhances the traditional Fourier series expansion was proposed.
- This algorithm aims to reduce the root-meansquare error (RMSE) between the target and simulated function and improve signal processing and analysis.

Enhanced Fourier Series by Correction Term

- The enhanced Fourier series expansion can be represented as $\mathrm{F}(\mathrm{x})$

$$
\begin{equation*}
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N_{1}}\left(a_{n} \cos \frac{2 \pi n x}{T}+b_{n} \sin \frac{2 \pi n x}{T}\right)+g(x) \tag{1}
\end{equation*}
$$

$\mathrm{F}(\mathrm{x})$: target function to be expanded
N_{1} : the number of terms in Fourier expansion
T : the Fourier expansion period.

- Correction Term $g(x)$ was introduced and written as
$g(x)=A_{1}\left(\cos 2 \pi f_{c_{1}} x\right)+B_{1}\left(\sin 2 \pi f_{c_{1}} x\right)+A_{2}\left(\cos 2 \pi f_{c_{2}} x\right)+B_{2}\left(\sin 2 \pi f_{c_{2}} x\right)+\cdots$

$$
\begin{equation*}
+A_{N_{2}}\left(\cos 2 \pi f_{c_{N_{2}}} x\right)+B_{N_{2}}\left(\sin 2 \pi f_{c_{N_{2}}} x\right) \tag{2}
\end{equation*}
$$

Selection of $\mathbf{f}_{\mathbf{c} 1}, \mathbf{f}_{\mathbf{c} 2}, \ldots, \mathbf{f}_{\mathrm{cN} 2}$

Fig. 1 The schematic of the Fourier series expansion adding the correction term basis.

- The frequencies of correction terms are located between an expansion period of Fourier series.
- By this irregular components, the signal function were expected to completely expressed within a limited bandwidth.

Coefficient obtained by Least Square Method

- The coefficients in both the Fourier series expansion and correction terms were obtained using Least Square Method and by partially differentiating the function of J below.

$$
\begin{aligned}
& J\left\{\left(a_{1}, b_{1} \ldots a_{N 1}, b_{N 1}\right) \ldots,\left(A_{1}, B_{1} \ldots A_{N 1}, B_{N 1}\right)\right\} \\
& =\int_{-T / 2}^{T / 2}\left[F(x)-\frac{a_{0}}{2}-\sum_{n=1}^{N 1}\left(a_{n} \cos \frac{2 \pi n x}{T}+b_{n} \sin \frac{2 \pi n x}{T}-g(x)\right]^{2} d x\right.
\end{aligned}
$$

RMSE of Simulated Results

- Adding one set of correction terms

$$
g(x)=A_{1}(\cos 2 \pi 20 x)+B_{1}(\sin 2 \pi 20 x)
$$

- Adding two sets of correction terms

$$
\begin{aligned}
g(x) & =A_{1}(\cos 2 \pi 13.33 x)+B_{1}(\sin 2 \pi 13.33 x) \\
& +A_{2}(\cos 2 \pi 26.66 x)+B_{2}(\sin 2 \pi 26.66 x)
\end{aligned}
$$

- The RMSE can be reduced to below 10^{-5} by adding two correction terms.
- Fewer Fourier series expansion terms are required.

References

