

Chi-Huang Shih, Pei-Jung Lin, Yeong-Yuh Xu *

yyxu@ncut.edu.tw (*Corresponding Author)

Abstract

- For patients at high risk of falling, detecting bed-exit behaviors is considered the first defense against falls.
- This study presents a practical, cost-effective, and easy-to-use bedexit monitoring system for healthcare settings, designed to preserve privacy and ensure accuracy by detecting bed-exit behavior through a narrow field of view.
- The proposed system utilizes a comprehensive three-stage approach.

Statistics in the dataset

For both daytime and nighttime categories, the data ratio for training, validation, and testing is 7:2:1, with the test data being independent of training and validation purposes. The dataset comprises 6,937 images.

Image Mode	Train	Validate	Test
Day	2983	658	329
Night	2017	634	316
All	5000	1292	645

At first, the YOLO algorithm detects the human body trunk within the scene. Following detection, the SORT algorithm tracks the detected body trunk objects across different frames. The final stage leverages deep learning models, notably LSTM or GRU networks, to precisely categorize the movements of the human body trunk.

• The results of the experiment show that the proposed system is very efficient in getting an accurate result, 97.97%, with regard to the speed of processing, 7.1 frames per second, which points out great advancement in precise bed-exit monitoring for patient care in healthcare.

System Overview

The prototype is powered by the Jetson Xavier NX and uses a CSI camera for video data acquisition. To meet the practical requirements of caregiving environments, our research utilizes an RGB camera with infrared night vision strategically placed at either the head or foot of the bed. This enables the acquisition of near-field vision (NFV) images around the clock.

Object Detection Results

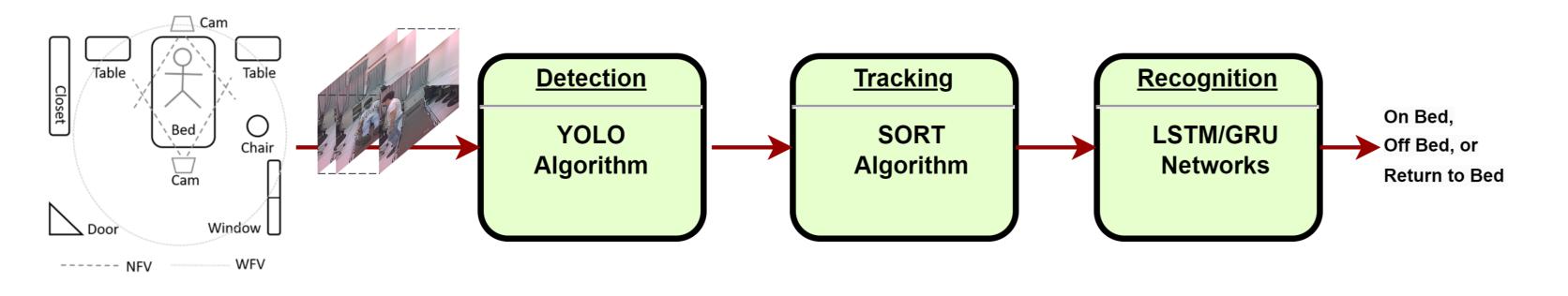
We annotated the human trunk regions in the NFV images as our detection targets. The performance metrics adopted for evaluation include precision, recall, F1 score (F1), and average precision (AP).

	Validate			Test				
Mode	Precision	Recall	F1	AP	Precision	Recall	F1	AP
Day	99%	99%	99%	99.68%	99%	99%	99%	99.17%
Night	98%	95%	96%	97.36%	100%	96%	98%	97.98%
All	99%	97%	98%	98.57%	100%	98%	98%	99.30%

- The results show that our system achieves a precision of 99% for daytime images and over 98% precision for nighttime images.
- These outcomes indicate that effective human detection obtained during the object detection phase can facilitate subsequent behavior recognition.

Behavior Recognition Results

During the behavior recognition phase, we initially employ the SORT

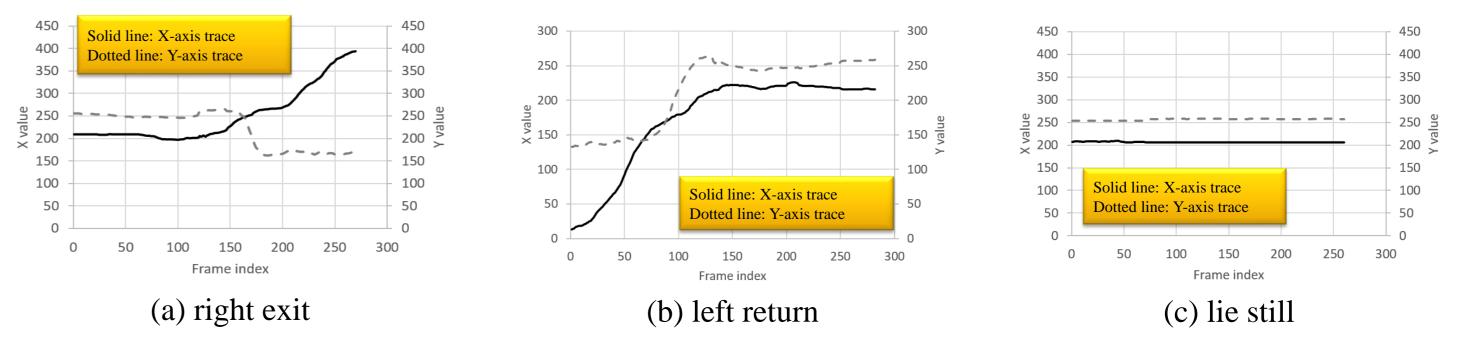


Upon capturing NFV images, the following steps are undertaken to recognize the patient's behavior.

- 1. The YOLO (You Only Look Once) algorithm is utilized to detect the human body trunk within the scene.
- 2. The SORT (Simple Online and Realtime Tracking) algorithm is employed to track the detected body trunk objects across frames.
- 3. The deep learning techniques such as LSTM (Long Short-Term Memory) or GRU (Gated Recurrent Unit) networks are used to classify the tracked objects' actions into three categories: getting off the bed, being on the bed, and returning to the bed.

Experiments

algorithm to track objects' movement trajectories across consecutive image frames, generating a set of discrete time-series data.



In this experiment, 159 videos of bedside behavior were utilized to evaluate the recognition performance for three types of behaviors: onbed, off-bed, and returning-to-bed. Experimental data were generated using various combinations of time windows and step sizes, and five different deep learning techniques were employed.

Table 1. Accuracy and time results for varied window and step sizes

	Window size						
Stoncizo	50		100		200		
Step size	Acc.	Time(s)	Acc.	Time(s)	Acc.	Time(s)	
5	87%	31.29	97%	30.54	100%	32.75	
10	80%	33.47	100%	32.02	97%	32.02	
20	70%	33.47	90%	34.93	100%	32.02	
40	43%	36.39	97%	32.02	97%	34.93	

Table 2. The selected hyperparameters for five deep-learning network models

Model	Hyper parameters
CNN	Filter = 16, Kernel size = 3, Dense = 32;
LSTM	Neurons = 32, Dense = 16
GRU	Neurons = 32, Dense = 64
CNN+LSTM	Filter = 8, Kernel size = 7, Neurons = 8, Dense = 64
CNN+GRU	Filter = 8, Kernel size = 5, Neurons = 8, Dense = 64

Table 3. Performance comparison among deep-learning network models

Ū		–	.			Ŭ
Vlodel	Accuracy	Loss	Parameters	FLOPs	Mode	(
CNN	96.87%	0.1053	25,077	30,719		100
.STM	97.97%	0.0615	477,061	134,400	Day	100
GRU	97.89%	0.0586	59,269	102,368	Night	100
CNN+LSTM	97.25%	0.0882	48,653	79,279	All	100
CNN+GRU	97.39%	0.0835	112,149	297,727		

Table 4. Behavior recognition results

Mode	On bed	Off bed	Return
Day	100%(22/22)	100%(31/31)	100%(34/34)

To verify the proposed method's accuracy and effectiveness, we established a dataset of NFV images depicting bedside behaviors. To align with real-world care settings, the dataset's images are divided into daytime and nighttime categories. Experiments were conducted focusing on object detection and behavior recognition.

ht	100%(15/15)	100%(28/28)	100%(29/29)
I	100%(37/37)	100%(59/59)	100%(63/63)

As shown in Table 3, all models reach 97% - 98% accuracy, with LSTM performing best. CNN+GRU achieves slightly lower accuracy with fewer parameters and less computation, which is more suitable for embedded system operations. Table 4 shows that the proposed bed-exit behavior recognition system achieves a 100% recognition rate, proving the system's feasibility.

