# Optimizing Temperature Distribution of Electrodialysis Stacks for Hydrogen Production

#### J240319

## APPLIED SYSTEM INNOVATION 17-21 April 2024, Kyoto, Japan

**International Conference on** 

### Meng-Hsuan Hsieh<sup>1</sup>, Hsing-Cheng Yu<sup>1</sup>, and Szu-Ju Li<sup>2</sup>



<sup>1</sup> Department of Systems Engineering and Naval Architecture, National Taiwan Ocean University <sup>2</sup> Material and Chemical Research Laboratories, Industrial Technology Research Institute

#### Introduction

- Hydrogen is regarded as a clean and renewable energy source. Its production not only features cleanliness and efficiency but also serves as an energy storage medium, addressing the issue of intermittent supply in renewable energy.
- Anion exchange membrane (AEM) electrolysis is a relatively new water electrolysis technology that combines the advantages of traditional alkaline water electrolysis and proton exchange membrane electrolysis.
- Infrared cameras can flexibly adapt to various shapes and sizes of fuel cells, providing comprehensive temperature information to optimize system operation and control strategies.
- In this study, an infrared camera (FLIR Lepton 3.5) has been selected as the temperature sensor to monitor the temperature distribution on the surface of the electrodialysis stack, and a fuzzy logic controller has been designed to enhance the temperature uniformity of the electrodialysis stack for hydrogen production.



#### Hydrogen Production System with Stack Temperature Control



| Stack Temperature Difference |      |      |      |      |      |  |  |  |
|------------------------------|------|------|------|------|------|--|--|--|
|                              | MB   | MS   | SM   | PS   | PB   |  |  |  |
| SM                           | NXSF | NXSF | NXSF | NXSF | NXSF |  |  |  |
| VS                           | XXSF | XXSF | XXSF | XXSF | XXSF |  |  |  |
| S                            | XSF  | XSF  | XSF  | XSF  | XSF  |  |  |  |
| М                            | VLF  | VLF  | SF   | VSF  | VSF  |  |  |  |
| LH                           | MLF  | MLF  | LF   | VLF  | VLF  |  |  |  |



#### **Temperature Uniformity Control Strategy**



#### **Infrared Image of Electrodialysis Stack for Hydrogen Production**



| ack | Н  | MHF | MHF | MF  | MLF | MLF | Men |
|-----|----|-----|-----|-----|-----|-----|-----|
| Sta | HR | HF  | HF  | MHF | MHF | MHF |     |
|     | VH | VHF | VHF | VHF | VHF | VHF |     |
|     | HT | VHF | VHF | VHF | VHF | VHF |     |

**Experimental Results** 



#### Conclusions

- This study uses infrared thermal imaging technology to comprehensively monitor the overall temperature distribution of the electrodialysis stack, providing more comprehensive temperature information.
- The combination of infrared thermal imaging technology with fuzzy logic control has been achieved in this study to maintain the stack temperature within the optimal operating temperature range.
- The control strategy has improved the temperature uniformity of the electrodialysis stack and controlled the temperature difference within 3°C, thereby enhancing the reliability of the hydrogen production system.