

We present a smart monitoring system for automated real-time road condition inspection. The proposed solution includes hardware and software applications for data processing: road condition inspection using hybrid algorithms based on digital signal processing and artificial intelligence technologies. The proposed system has an interactive web interface for real-time data sharing and the monitoring, visualization, and management.

Introduction

In public transportation, the highway will become digitalized, allowing real-time data collection and sharing, surveillance of the infrastructure condition such as bridges and tunnels, and traffic monitoring and management [1]. Digitalization will prepare the needed digital capabilities to integrate and assist the transition to fully connected and automated vehicles (CAV) [2].

Objective:

- Automate road conditions inspection and monitoring,
- Reduce road pretreatment and treatment applications,
- Reduce the overall material usage such as salt,
- Manage road maintenance and inspection missions,
- Enhance drivers and pedestrians safety,
- Send road safety alerts/notifications to all road users,
- Facilitate the integration of the CAVs new technologies

Challenges:

- Manual inspection: usually, regular road inspection missions/visits are performed to check the road visually or using some measurement tools which is costly due to the need for human resources and long duration.
- *Small-size and Low-quality data*: the manually collected data takes few samples and focuses on some selected areas which might have inconsistency due to human mistakes.
- Harsh weather conditions: limit the camera-based inspection performance due to ambient light variation and visibility reduction (e.g., dust or snow).

Highway Automated Inspection System (HAIS) Abderrazak Chahid, Manir U. Isham, Shashwat Grover, Karan Pal Singh, Ahmad Mousa, Hossameldin Ouda **Principal Investigator:** Dr. Hossam A. Gabbar, (Collaborator: Dr. Khalid Elgazzar) Faculty of Engineering and Applied Science, Ontario Tech University (UOIT), Oshawa, ON, Canada

Abstract

Figure 1: The proposed road inspection and monitoring system.

Figure 3: (a) road damages [4], (b) road lane markings reflectivity [5]

Figure 4: Damage detection using: (a) Dashcam, (b) node camera, and (c) drone camera [6]

Figure 2: The Illustration of the inspection node

Figure 5: Road condition visualization data exploration using the inspection node [7]

Ontario (2)

Conclusions

- ✓ Develop an automated highway inspection system enabling real-time hybrid inspection and monitoring,
- \checkmark enable data-sharing of the collected data using the Firebase cloud platform,
- ✓ Design an interactive web interface for monitoring, and management of inspection reports.

Future work

- Extend the proposed solution to other infrastructure inspections, such as bridges and tunnels,
- Using autonomous drones and implementing an optimization-based algorithm for trajectory planning,
- Consider the minimization of the overall cost and resources: number of used drones, battery charging, ...

Acknowledgment

research was funded by the Ministry of This Transportation Ontario (MTO) fund number 208060

References

- [1] Salesforce Canada. Why Canadian Manufacturers Need To Understand-And Embrace–The Fourth Industrial Revolution; 2022.
- [2] Saeed, T.U.; Alabi, B.N.T.; Labi, S. Preparing Road Infrastructure to Accommodate Connected and Automated Vehicles: System Level Perspective. J. Infrastruct. Syst. 2021, 27, 6020003
- [3] H. A. Gabbar, A. Chahid et al., "HAIS: Highways Automated-Inspection System," Technologies, vol. 11, no. 2, 2023.
- [4] <u>https://youtu.be/SY8MXkMBv3A</u>
- [5] <u>https://youtu.be/uSXqjpOBzsY</u>
- [6] <u>https://youtu.be/Eq5joyWuiKU</u>
- [7] <u>https://youtu.be/5k4igwUg2ao</u>